Exercise 138

For the following exercises, P is a point on the unit circle. a. Find the (exact) missing coordinate value of each point and b . find the values of the six trigonometric functions for the angle θ with a terminal side that passes through point P. Rationalize denominators.

$$
P\left(x, \frac{-\sqrt{15}}{4}\right), x>0
$$

Solution

The given point P on the unit circle is shown below. $x>0$ means that it's in the right half.

Zoom in on the right triangle formed by $P . \theta$ is the counterclockwise angle from the positive x-axis.

The hypotenuse has a length of 1 because P is on the unit circle. The sides of a right triangle are related by the Pythagorean theorem, and this allows us to determine x.

$$
\begin{aligned}
& x^{2}+\left(\frac{-\sqrt{15}}{4}\right)^{2}=1^{2} \\
& x^{2}=1^{2}-\left(\frac{-\sqrt{15}}{4}\right)^{2} \\
& x^{2}=\frac{1}{16} \quad \rightarrow \quad x=\frac{1}{4}
\end{aligned}
$$

Therefore, the six trigonometric functions are

$$
\begin{aligned}
& \sin \theta=\frac{\frac{-\sqrt{15}}{4}}{1}=-\frac{\sqrt{15}}{4} \\
& \cos \theta=\frac{x}{1}=x=\frac{1}{4} \\
& \tan \theta=\frac{\frac{-\sqrt{15}}{4}}{x}=\frac{\frac{-\sqrt{15}}{4}}{\frac{1}{4}}=-\sqrt{15} \\
& \csc \theta=\frac{1}{\frac{-\sqrt{15}}{4}}=-\frac{4}{\sqrt{15}}=-\frac{4 \sqrt{15}}{15} \\
& \sec \theta=\frac{1}{x}=\frac{1}{\frac{1}{4}}=4 \\
& \cot \theta=\frac{x}{\frac{-\sqrt{15}}{4}}=\frac{\frac{1}{4}}{\frac{-\sqrt{15}}{4}}=-\frac{1}{\sqrt{15}}=-\frac{\sqrt{15}}{15} .
\end{aligned}
$$

